

Superfund Records Center SITE: Ciba-Geigy BREAK: 19.00 OTHER: 651245

Mara Elter

Regional Project Officer U.S. Environmental Protection Agency Waste Management Division JFK Federal Building, Room 2203 Boston, Massachusetts 02203

September 6, 1991

Reference:

Contract No. 68-W9-0003, TES 6

Work Assignment No. R01005

CIBA-GEIGY, Cranston, Rhode Island

Corrective Action Oversight

Subject: Deliverable:

EPA Split-Sample Analytical Results

(SAS Case Number 6149A)

Dear Mara:

In accordance with the reporting requirements of the subject Work Assignment, enclosed are two (2) copies of the EPA Split-Sample Analytical Results (SAS Case Number 6149A) for the CIBA-GEIGY This submittal satisfies an additional deliverable - SEDIMENT SAMPLES requirement for this Work Assignment.

Please note this deliverable does not provide interpretation of the split sample results at the request of the WAM. Further evaluation will be performed by Alliance when the chemical data obtained by the facility is available for comparison.

Questions regarding this submission should be directed to the Alliance Project Manager, Joanna Hall at (508) 970-5757 ext 5146, or me.

Sincerely yours,

Peter Spawn

Regional Manager

PS/km

Enclosure

651245

SEMS DocID

cc: Frank Battaglia/EPA Work Assignment Manager Jill E. Robbins/TES-6 Contracting Officer (letter only) Jack Lewis, Jr./Alliance TES-6 Contracts Manager (letter only) Joanna Hall/Alliance Project Manager

EPA SPLIT-SAMPLE ANALYTICAL RESULTS RAS CASE 6149A CIBA-GEIGY CRANSTON, RHODE ISLAND CORRECTIVE ACTION OVERSIGHT

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Waste Management Division JFK Federal Building, Room 2203

Boston, Massachusetts 02203

Work Assignment No.: R01005

EPA Region:

EPA Site/Facility I.D. No.: N/A

Contract No.: 68-W9-0003 (TES 6)

Alliance Project No.: 1-635-058-1-1000-0

Alliance Project Manager: Joanna Hall

Telephone No.: (508) 970-5600

Subcontractor: N/A

Subcontractor No.: N/A

Subcontractor Project Manager: N/A

Telephone No.: N/A

EPA Work Assignment Manager: Frank Battaglia

Telephone No.: (617) 573-9643

Date Prepared: September 6, 1991

ALLIANCE TECHNOLOGIES CORPORATION

Boott Mills South Foot of John Street Lowell, Massachusetts 01852 (508) 970-5600

PRESENTATION OF ANALYTICAL RESULTS FROM EPA SPLIT SAMPLES

Site:

Ciba-Geigy

Date Sampled:

March 28, 1991

SAS Number:

6149A

SDG Nos:

SDG 6149A-01

Contract:

68-W9-003, TES-6

WA Number:

R01005

Introduction

The attached data and recommendations summary tables outline the validated results of SAS No. 6149A, collected at the site of the former Ciba-Geigy facility on March 28, 1991. Collection of these samples for dioxin analysis was not anticipated during the scoping of field oversight and therefore was not included in Alliance's Revised Oversight Work Plan (March 26, 1991). Samples were collected for dioxin analysis at the request of the EPA WAM in response to positive preliminary results reported by CIBA-GEIGY. RAS Case 16142 was also collected on March 28th for organic and inorganic analysis. Data from this RAS Case were included in the EPA split samples analytical results RAS Case 16142 (Alliance; August 7, 1991).

The objective for the collection of these split samples was not the quantitative, approach typically used for oversight tasks. The objective was to qualitatively compare the analytes identified by SAS CLP analytical methods for dioxin analysis to those identified by CIBA-GEIGY using SW-846 8280 methods.

The following samples were submitted as SAS Case 6149A:

Sample ID	Sample Type	Sample Location	Analysis
6149-01	Rinsate blank		PCDD/PCDF
6149-02	QC Sample	NGK722	PCDD/PCDF
6149-03	QC Sample	MJO345	PCDD/PCDF
6149-04	Sediment	SD-05-M2	PCDD/PCDF
6149-05	Sediment	SD-07-M2	PCDD/PCDF
6149-06	Sediment	SD-07-M2	PCDD/PCDF
6149-07	Sediment	SD-01-R2	PCDD/PCDF
6149-08	Sediment	SD-03-R2	PCDD/PCDF
6149-09	Sediment	SD-00-M2	PCDD/PCDF

Validation was performed by Weston, ESAT for EPA, Region I in accordance with Region I guidelines.

A91-721.txt

1

RECYCLED PAPER

Quality Control Results

A review of the data validation reports indicates that all data were accepted. A few data points were estimated (J) due to routine laboratory quality control problems. A brief explanation of the laboratory quality control problems is provided on the attached recommendations summary table.

Split Sample Comparison Comments

Alliance has not received a copy of Ciba-Geigy's data for each of these split samples. Therefore, a comparison of the split results was not performed at this time.

Split Sample Recommendations

Because Ciba-Geigy's data has not been received, Alliance can not make any recommendations regarding split sample comparisons at this time.

RECYCLED PAPER

2

Sample Number	6149A-01	6149A-04	6149A-05	6149A-06	6149A-07	6149A-08	6149A-09	•
Dioxins								
2,3,7,8-TCDD	A	A	Α	A	A	A	Α	
1,2,3,7,8-PeCDD	A	A	Α	 A	Ä	A	1 3	
1,2,3,4,7,8-HxCDD	A	Ā	Ā	A .	Ä	A	Ā	
1,2,3,6,7,8-HxCDD	A .	Α	A	' A -	A	A	A	
1,2,3,7,8,9-HxCDD	A	Α	A	A	Ā	Ā	A	
1,2,3,4,6,7,8-HpCDD	Α	Α	Α	Α	Α	A	A	
OCDD	À	J¹	. A	Α .	J^1	Α	$\mathbf{J^1}$	
Furans	• . • . • .		· ·					•
2,3,7,8-TCDF	Α	A	A	A	Á	A	A	;
1,2,3,7,8-PeCDF	-A	A	Ā	Ā	Ā	Ā	Ā	
2,3,4,7,8-PeCDF	A	A .	Α	A	A	A	. A	
1,2,3,4,7,8-HxCDF	Α	` A	Α	A .	A	· A	Α .	
1,2,3,6,7,8-HxCDF	A .	A	Α	Α	Ą	Α	Α	
2,3,4,6,7,8-HxCDF	· A	Α	. A	A	A	A	Α	•
1,2,3,7,8,9-HxCDF	A _.	Α	Α	Α	A	A	Α	
1,2,3,4,6,7,8-HpCDF	À	Α	· . A	A	A	A	Α	
1,2,3,4,7,8,9-HpCDF	A	Α	Α	٠.	٨	A	A .	~
OCDF	Ā	Ā	$\frac{\Lambda}{J^2}$	A J ²	A . A	A A	A A	

A - Accept the data.

Note: The EMPC value is the estimated maximum possible concentration for a given analyte. This value incorporates the contribution from GC/MS signals which meet some but not all of the identification criteria for that analyte.

w

A91-721.txt

RECYCLED PAPER

ENFORCEMENT CONFIDENTIAL

J' - Estimate the positive value and EMPC (J) for OCDD due to blank contamination. Some or all levels of OCDD found in the sample may be attributed to contamination.

J² Estimate the positive value (J) and estimate the non-detected value (UJ) for OCDD since the relative percent difference criteria was not met. Non-homogeneity of the sample may result in inaccurate quantitation.

J³ - Estimate the EMPC value for 1,2,3,7,8-PeCDD since calibration criteria was not met. Instrument response to this compound was unstable and quantitation may not be accurate.

SITE: CIBA GEIGY - CRANSTON, RI

CASE/SAS NO: 6149A

Sample No	6149	A-01	6149A-04		6149A-05	
Matrix	AQUEOUS		SOIL		SOIL	
TCDD/TCDF Conc	ng/L	DL/EMPC*	ug/kg	DL/EMPC*	ug/kg	DL/EMPC*
2,3,7,8-TCDD	ט	0.100	ט	0.0063	Ŭ	0.0317
1,2,3,7,8-PeCDD	U	0.382	U	0.0216	U	0.0536
1,2,3,4,7,8-MxCDD	U	0.250	Ų	0.0127	U	0.0634
1,2,3,6,7,8-NxCDD	U	0.216	U	0.0114	· U	0.0536
1,2,3,7,8,9-HxCDD	U	0.226	U	0.0127	U	0.0585
1,2,3,4,6,7,8-MpCDD	U	0.412	U	0.0254	0.5682	
OCDD	U	0.375	0.0853 J		10.1707	
2,3,7,8-TCDF	U	0.070	U	0.0050	0.0414	
1,2,3,7,8-PeCDF	U	0.170	U	0.0127	. U	0.0390
2,3,4,7,8-PeCDF	U	0.183	U	0.0127	U	0.0390
1,2,3,4,7,8-HxCDF	υ	0.174	Ų	0.0089	U	0.0390
1,2,3,6,7,8-HxCDF	U	0.156	U	0.0076	U	0.0341
2,3,4,6,7,8-HxCDF	U	0.145	U	0.0076	U	0.0317
1,2,3,7,8,9-HxCDF	U	0.211	U	0.0114		0.0512*
1,2,3,4,6,7,8-HpCDF	U .	0.184	U	0.0089	0.0878	<u> </u>
1,2,3,4,7,8,9-HpCDF	U	0.271	U	0.0127	· U	0.0414
OCDF	U	0.203	U	0.0140	ΟΊ	0.0292
					ļ	
TOTAL TCDD	·	17.891*J		2.0968*J		5.5024*J
TOTAL PeCDD	U	0.382	U .	0.0216	U	0.0536
TOTAL HXCDD	U	0.250	U	0.0127	0.0487	<u> </u>
TOTAL HpCDD	U	0.412	υ	0.0054	1.1463	
TOTAL TCDF		0.389*J		0.0458*J	0.5365 J	0.0024 J
TOTAL PeCDF	U	0.183	U	0.0127	0.0243	0.2560
TOTAL HXCDF	U	0.211	· U	0.0114	0.0243	0.1219
TOTAL HpCDF	U	0.271	. <u>U</u>	0.0127	0.1707	
TOXICITY EQUIVALENCY	0		0.000067		0.011	
DILUTION FACTOR	1		1		1	
% MOISTURE	N/A		21.5		59.0	
DATE OF RECEIPT	03/29/91		03/29/91		03/29/91	
SAMPLE EXTRACTION DATE	03/29/91		03/29/91		03/29/91	
ANALYSIS DATE	04/	02/91	04/03/91		04/03/91	
GC/MS I.D.	v	370E	VG70E		VG70E	

Case/sas no:<u>6149a</u>

Sample No	6149A-06RE		61 49A- 07		6149A-08	
Matrix	SOIL		SOIL		SOIL	
TCDD/TCDF Conc	ug/kg	DL/EMPC*	ug/kg	DL/EMPC*	ug/kg	DL/EMPC*
2,3,7,8-TCDD	U	3.91	ซ	0.0104	0.0360	
1,2,3,7,8-PeCDD	U	0.0939	U	0.0379		0.1422*J
1,2,3,4,7,8-MxCDD	U	0.0835	U	0.0314	U	0.0573
1,2,3,6,7,8-HxCDD	U	0.0757	U	0.0274	7.4267	
1,2,3,7,8,9-HxCDD	U	0.0783	U	0.0287	1.6709	
1,2,3,4,6,7,8-HpCDD	0.6762		U	0.0340	617.9#	
0000	11.8041			0.0471*J	5396.4#	
					<u> </u>	
2,3,7,8-TCDF	0.0522		U	0.0091	0.2484	
1,2,3,7,8-PeCDF	U	0.0469	U	0.0170		0.0403*
2,3,4,7,8-PeCDF	U	0.0496	U	0.0183	0.0870	
1,2,3,4,7,8-HxCDF	U	0.0496	U	0.0196	0.7685	
1,2,3,6,7,8-HxCDF	U .	0.0443	U	0.0183	0.2016	
2,3,4,6,7,8-HxCDF	U	0.0417	U	0.0170	0.1231	
1,2,3,7,8,9-HxCDF		0.0704*	U	0.0248		0.0445*
1,2,3,4,6,7,8-HpCDF	0.1227		U	0.0209	25.78	
1,2,3,4,7,8,9-HpCDF	U	0.1357	U	0.0314	1.947	
OCDF	0.5117J		U	0.0261	92.304	·
	· · · · · · · · · · · · · · · · · · ·					
TOTAL TCDD	· · · · · · · · · · · · · · · · · · ·	6.9033*J		1.7225*J	0.0849 J	4.582*J
TOTAL PeCDD	U	0.0939	U	0.0379		88.917ºJ
TOTAL HXCDD	U	0.0835	υ	0.0314	29.172	29.813
TOTAL MpCDD	1.1488		U	0.0340	1122.6	
TOTAL TCDF	0.6266 J	0.8224 J	Ų.	0.0287*J	0.9341 J	1.312 J
TOTAL PeCDF		0.2036*	U	0.0183	2.187	2.435
TOTAL NXCDF	0.1305	0.2010	U	0.0248	28.386	28.531
TOTAL NPCDF	0.2349		U	0.0314	136.454	
TOKICITY EQUIVALENCY	0.010		0.000036		4.414	
DILUTION FACTOR	. 1		1		1	
% MOISTURE	61.7		23.6		52.9	
DATE OF RECEIPT	03/29/91		03/29/91		03/29/91	
SAMPLE EXTRACTION DATE	03/29/91		03/29/91		03/29/91	
ANALYSIS DATE	04/11/91		04/03/91		04/03/91	
GC/MS 1.D.		70E	VG70E		VG70E	

CASE/SAS NO: 61491.

Sample No	6149A-09					
Matrix	so)IL	SOIL		SOIL	
TCDD/TCDF Conc	ug/kg	DL/EMPC*	ug/kg	DL/EMPC*	ug/kg	DL/EMPC*
2,3,7,8-TCDD	0.014				· · · · · · · · · · · · · · · · · · ·	
1,2,3,7,8-PeCDD	U	0.084				
1,2,3,4,7,8-HxCDD	U	0.056				
1,2,3,6,7,8-HxCDD	U	0.048		<u> </u>		
1,2,3,7,8,9-HxCDD	U	0.052	-			
1,2,3,4,6,7,8-HpCDD	0.128	- 2			<u> </u>	
OCDD	1.652 J			·		
			<u> </u>		<u> </u>	
2,3,7,8-TCDF	Ü	0.018	· ·		<u> </u>	
1,2,3,7,8-PeCDF		0.032	<u> </u>	 	<u> </u>	1
2,3,4,7,8-PeCDF	U	0.034				
1,2,3,4,7,8-HxCDF	U	0.066				
1,2,3,6,7,8-HxCDF	U	0.06	 			
2,3,4,6,7,8-HxCDF	υ	0.054				
1,2,3,7,8,9-HxCDF	U	0.08		· · · · · · · · · · · · · · · · · · ·		<u> </u>
1,2,3,4,6,7,8-HpCDF	0.032			<u> </u>		
1,2,3,4,7,8,9-HpCDF	U	0.062		 	 	
OCDF	0.09			 -		-
TOTAL TCDD		3.926*J				,
TOTAL PECOD	U	0.084				
TOTAL HXCDD	,	0.054*				
TOTAL HPCDD	0.24					
TOTAL TCDF	0.08 J	0.172 J				
TOTAL PeCDF	0.12	0.172				
TOTAL HXCDF		2.262*				
TOTAL HpCDF	0.04	0.212				
TOXICITY EQUIVALENCY	0.002					
DILUTION FACTOR		1				
% MOISTURE	50.0					
DATE OF RECEIPT	03/29/91					
SAMPLE EXTRACTION DATE	03/29/91			·		
ANALYSIS DATE	04/	03/91				
GC/MS 1.D.	V	G70E			1	